Possible Solutions

Possible Solution 1

- Triangle ABC was dilated to create triangle $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$.

- Write a proportion that shows the relationship between the two triangles.
- Writing the proportions between:

$$
\begin{gathered}
\frac{A B}{A^{\prime} B^{\prime}}=\frac{B C}{B^{\prime} C^{\prime}}, \frac{B C}{B^{\prime} C^{\prime}}=\frac{A C}{A^{\prime} C^{\prime}}, \frac{A B}{A^{\prime} B^{\prime}}=\frac{A C}{A^{\prime} C^{\prime}} \\
\frac{4}{6}=\frac{5}{7.5} \cdot \frac{5}{7.5}=\frac{8}{12}, \frac{4}{6}=\frac{8}{12}
\end{gathered}
$$

- Writing the proportions within:

$$
\begin{gathered}
\frac{A B}{B C}=\frac{A^{\prime} B^{\prime}}{B \prime C^{\prime}}, \frac{B C}{A C}=\frac{B^{\prime} C^{\prime}}{A \prime C^{\prime}}, \frac{A B}{A C}=\frac{A^{\prime} B^{\prime}}{A \prime C \prime} \\
\frac{4}{5}=\frac{6}{7.5}, \frac{5}{8}=\frac{7.5}{12}, \frac{4}{8}=\frac{6}{12}
\end{gathered}
$$

Possible Solution 2

- When setting up the proportion between two similar figures it is important that corresponding sides are being compared. This can occur within the two figures.
- Such as $\frac{A B}{B C}$ and $\frac{A^{\prime} B^{\prime}}{B^{\prime} C^{\prime}}$. Once the corresponding sides have been established, then the sides can be replaced by the values for the side lengths.
- There are a variety of possible proportions for this situation.

$$
\frac{4}{5}=\frac{6}{7.5}
$$

- Triangle ABC was dilated to create triangle $A^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$.

- Write a proportion that shows the relationship between the two triangles.

$$
\frac{4}{5}=\frac{6}{7.5}
$$

Possible Solution \#3

- Triangle $A B C$ is similar to triangle $A^{\prime} B^{\prime} C^{\prime}$.

Possible Solution:

$$
\begin{aligned}
\frac{A B}{A^{\prime} B^{\prime}} & =\frac{B C}{B^{\prime} C^{\prime}} \\
\frac{4}{6} & =\frac{5}{7.5}
\end{aligned}
$$

